The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ.
نویسندگان
چکیده
Pseudomonas aeruginosa poses a serious risk in individuals suffering from cystic fibrosis (CF). Strains colonizing the CF lung are generally motile but frequently convert to a nonmotile phenotype as the disease progresses. In many cases, this is coordinately regulated with the overproduction of the exopolysaccharide alginate. Both the expression of alginate (mucoidy) and the loss of flagellum synthesis may provide the bacterium with a selective advantage in the CF lung. Previously published data showed that the regulation of alginate production and flagellum biosynthesis in the CF isolate FRD1 is inversely controlled by the alternative sigma factor AlgT. In this study, we observed that in CF isolates, the mucoid and the nonmotile phenotypes occur predominantly together. Using microarrays, we compared the transcriptomes of isogenic AlgT(+) and AlgT(-) P. aeruginosa and discovered that AlgT significantly downregulated the majority of flagellar genes. A pronounced inhibitory effect was observed in several genes essential for proper flagellum expression, including fleQ, which encodes an essential flagellar regulator. The microarray data were confirmed by reverse transcriptase PCR analysis and promoter fusion assays in isogenic AlgT(+) and AlgT(-) strains. Transmission electron microscopy, motility assays, and Western blots showed that ectopic expression of FleQ in mucoid, nonmotile CF isolates restored flagellum biosynthesis and motility. Together, these data show that AlgT mediates the negative control of flagellum expression by inhibiting the expression of the flagellar regulator fleQ.
منابع مشابه
The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates.
Pseudomonas aeruginosa is a microorganism associated with the disease cystic fibrosis. While environmental P. aeruginosa strains are generally nonmucoid and motile, isolates recovered from the cystic fibrosis lung frequently display a mucoid, nonmotile phenotype. This phenotypic conversion is mediated by the alternative sigma factor AlgT. Previous work has shown that repression of fleQ by AlgT ...
متن کاملNegative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU).
Many respiratory isolates of Pseudomonas aeruginosa from cystic fibrosis patients are mucoid (alginate producing) yet lack flagella. It was hypothesized that an alginate regulator inhibits flagellar gene expression. Mutations in algB, algR, and algT resulted in nonmucoid derivatives, yet algT mutants expressed flagella. AlgT-dependent control of flagellum synthesis occurred through inhibition o...
متن کاملA four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa.
The single polar flagellum of Pseudomonas aeruginosa is an important virulence and colonization factor of this opportunistic pathogen. In this study, the annotation of the genes belonging to the fla regulon was updated and their organization was analysed in strains PAK and PAO1, representative type-a and type-b strains of P. aeruginosa respectively. The flagellar genes are clustered in three no...
متن کاملControl of Pseudomonas aeruginosa algZ expression by the alternative sigma factor AlgT.
AlgZ controls Pseudomonas aeruginosa alginate synthesis by activating algD, yet algZ expression is not detectable in nonmucoid strains. Mobility shift and Western blot assays revealed that algZ expression requires the sigma factor AlgT. The mapped algZ transcription start site revealed a consensus AlgT-dependent promoter that, when mutated, substantially reduced algZ transcription.
متن کاملThe algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster.
The phytopathogenic bacterium Pseudomonas syringae pv. glycinea infects soybean plants and causes bacterial blight. In addition to P. syringae, the human pathogen Pseudomonas aeruginosa and the soil bacterium Azotobacter vinelandii produce the exopolysaccharide alginate, a copolymer of d-mannuronic and l-guluronic acids. Alginate production in P. syringae has been associated with increased fitn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 187 23 شماره
صفحات -
تاریخ انتشار 2005